Основы работы с системой MathCAD 7.0


14. 2. Параметрическая трехмерная графика


При построении трехмерных поверхностей и объемных фигур можно использовать параметрическое задание описывающих их функций. Фигуры задаются значениями координат х, у и z всех точек фигуры. При этом в шаблоне 3D-графики указываются три матрицы, хранящие массивы этих координат, — X, Y и Z. Ниже представлены интересные примеры применения такой графики.

Построение сферы

На рис. 14. 1 показано построение в трехмерном пространстве сферы. Сфера строится из каркаса, причем число деления ее по вертикали N задается в начале построения. Затем вычисляются массивы опорных точек каркаса, которые представлены матрицами X, Y и Z.

151.jpg

Рис. 14. 1 Построение сферы

Используя различные форматы 3D-графиков, можно выполнить рисунок сферы в различных стилях, в том числе с цветной или черно-белой окраской. Однако в таком случае каркасное построение с применением алгоритма удаления невидимых линий дает, пожалуй, наиболее наглядное представление о характере этой простой объемной фигуры. На рис. 14. 1 представлено два варианта построения сферы с применением различной функциональной окраски.

Параметрическое задание трехмерной поверхности позволяет эффективно применять форматирование их графиков, в частности задавая углы обзора 3D-фигур и меняя их функциональную окраску. К тому же визуализацию таких фигур можно существенно улучшить.

Построение фигуры вращением линии вокруг оси Х

Интересные объемные фигуры можно получить, вращая некоторую кривую вокруг той или иной оси. При этом необходимо обеспечить пересчет координат всех узловых точек фигуры по известным из геометрии формулам. На рис. 14. 2 показано построение такой фигуры вращением линии, заданной функцией f (x),

вокруг оси X.

В документе на рис. 14. 2 приведены все необходимые формулы для пересчета координат узловых точек фигуры при ее вращении. Даны также графики исходной кривой (слева внизу) и фигуры, полученной ее вращением (справа внизу). Фигура напоминает опрокинутую рюмку, лежащую на плоскости. Она построена без применения функциональной окраски, но с использованием алгоритма удаления невидимых линий.




Начало  Назад  Вперед



Книжный магазин