Основы работы с системой MathCAD 7.0

viagra

14. 4. Реализация численных методов Быстрые операции с полиномами-векторами - часть 5


1515.jpg

Рис. 14. 15 Линейное сглаживание по пяти точкам

Можно повысить эффективность сглаживания, увеличивая число точек, используемых для статистической обработки заданной точки, и перейдя к кривой сглаживания в виде отрезка полинома более высокой степени, чем 1 Так, известны формулы нелинейного сглаживания по семи точкам [1, 2, 28] Этих формул семь по три для крайних точек и одна для остальных Для нели нейных зависимостей, близких к параболическим или содержащих отрезки парабол, нелинейное сглаживание гораздо более эффективно, чем линейное Тем не менее и здесь гладкость кривой сглаживания невелика

Единого мнения о целесообразности повторения процедуры сглаживания у математиков нет Одни считают, что повторное сглаживание делает кривую сглаживания более плавной Другие не рекомендуют применение повторного сглаживания В целом сглаживание — эффективный инструмент предварительной обработки исходных данных Затем можно использовать более тонкие методы их обработки, например фильтрацию на основе спектрального анализа и синтеза, полиномиальную регрессию с применением полинома определенного порядка и т д

Решение дифференциального уравнения первого порядка методом Рунге — Кутта

Решение дифференциальных уравнений широко применяется в практике научно-технических расчетов Это связано с тем, что дифференциальные уравнения (и системы из них) описывают поведение различных объектов в динамике, например переходные процессы в электронных схемах или работу часового маятника Линейные дифференциальные уравнения имеют решения в виде специальных функций (скажем, функций Бесселя) Однако многие физические системы нелинейны и описываются нелинейными дифференциальными уравнениями, не имеющими аналитического решения. В этом случае приходится использовать численные методы решения дифференциальных уравнений.

Версия MathCAD 7. 0 PRO содержит мощные средства для реализации численных методов решения дифференциальных уравнений. Поэтому может возникнуть вопрос: а нужно ли создавать свои документы для реализации таких методов? Ответ на него не однозначен. Если ваша цель — решение конкретной задачи, то проще воспользоваться готовыми функциями MathCAD. Они были описаны выше. Однако нередко педагоги и специалисты без должных оснований говорят о трудности реализации в системе MathCAD обычных численных методов. Это неверно! Реализация таких методов в системе MathCAD легка и наглядна. Более того, она позволяет вмешиваться в алгоритмическую реализацию методов решения, что способствует созданию новых или улучшенных методов решения дифференциальных уравнений, ориентированных на решение интересующих пользователя задач.




Начало  Назад  Вперед



Книжный магазин